
Analysis 2
12 March 2024

…  
with .
x = t, y = 1 − t2

−1

2
≤ t ≤ 1

…  
with .

x = ln(t5), y = ln(t)
1 ≤ t ≤ e

…  
with .

x = −cos(t), y = sin(t)
π
4 ≤ t ≤ π

if your surname starts A-F. if surname G-R. if surname S-Ż.

Warm-up: Calculate  for the function 

 and …
∫

b

a
f(x(t), y(t)) (x′￼(t))2 + (y′￼(t))2dt

f(x, y) = xy3



Warm-up: Calculate  for the function 

 and three different .
∫

b

a
f(x(t), y(t)) (x′￼(t))2 + (y′￼(t))2dt

f(x, y) = xy3 ⃗r : [a, b] → ℝ2

S-Z: (t - t3) dt = …∫
1

-1/ 2

•

Your simplified integral should be

A-F: (-cos t)(sin t)3 dt = …∫
π

π/4

G-R:  dt = …∫
e

1

5 26 (lnt)
t

4



Warm-up: Calculate  for the function 

 and three different .
∫

b

a
f(x(t), y(t)) (x′￼(t))2 + (y′￼(t))2dt

f(x, y) = xy3 ⃗r : [a, b] → ℝ2

A-F: (-cos t)(sin t)3 dt = (sin t)4  = ∫
π

π/4

-1
4

t=π

t=π/4

1
16

G-R:  dt = (ln t)5  = ∫
e

1

5 26 (lnt)
t

26
t=e

t=1
26

S-Z: (t - t3) dt = ( t2 - t4)  = ∫
1

-1/ 2

1
2

1
4

t=1

t=-1/ 2

1
16

•

Your simplified integral should be

4



a scalar (number) 
as output

a vector (or multiple 
numbers) as output

a scalar (number) 
as input “vector function”

a vector (or multiple 
numbers) as input

“scalar function”  
or “scalar field” “vector field”

Last 
week



a scalar (number) 
as output

a vector (or multiple 
numbers) as output

a scalar (number) 
as input

a vector (or multiple 
numbers) as input

f(x)

f(x, y, z) ⃗F (x, y, z)

⃗r(t)x(t)
P(x)

T(x, t)

Last 
week



A scalar function is a function whose output is a number but whose input  
can be thought of as a list of numbers or as a single vector. We often write

 
for a function 

.
and  for .

A curve (path) in 2D or 3D can be described using parametric equations or 
using a single vector equation. Therefore a vector function 

can also describe a curve.

f(x, y)

f : ℝ2 → ℝ
f(x, y, z) f : ℝ3 → ℝ

⃗r : [a, b] → ℝn

Last 
week



Integrals
Is  more or less than ?

more or less than ?
more or less than ?

How could we get an approximate value for this 
integral?

∫
1

0
ex2dx 1

2
3

y = ex2

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

(0.5, 1.28)
∙

(0.75, 1.76)
∙

1.28
×

0.25

1.76
×

0.25
1.06

×
0.25

1
×

0.25
O.25 + 1.O6×O.25 + 1.28×O.25 + 1.76×O.25 
= O.25 + O.2661 + O.321 + O.439 
= 1.276



Integrals
Is  more or less than ?

more or less than ?
more or less than ?

How could we get an approximate value for this 
integral?

∫
1

0
ex2dx 1

2
3

y = ex2

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

(0.5, 1.28)
∙

(0.75, 1.76)
∙

O.125 + 1.O15×O.125 +  + 1.76×O.125 + 2.15×O.125 
= O.125 + O.127 +  + O.219 + O.269 
= 1.362

⋯
⋯



We can approximate  by adding up several terms that are 

(  value) × (length of a small interval).
without actually drawing any rectangles.

Officially, the integrals is defined as the limit of this kind of sum.
The Fundamental Theorem of Calculus tells us that we can use  
anti-derivatives to calculate integrals instead (if we can find a formula for  
the anti-derivative of ).

The  idea lets us draw a 1D picture instead of a 2D picture…

∫
b

a
f(x)dx

f

f(x)

∑ f ⋅ length



Area Anything

Analysis 1: f(x)dx∫
b

a

5.3 5.9



f(x,y)ds∫C

start

end

f(x)dx∫
b

a

The length of each small line segment 

is exactly , so that’s 
why its in our path-integral formula.

(x′￼)2 + (y′￼)2



The path integral of a scalar function   over a curve  is  
written as

.

Officially, this is the limit of a sum of -values multiplied by lengths of small 
intervals (small line segments connecting points on the curve ).

Last week, I suggested using the following formula:

.

even though  isn’t actually part of the definition above.

f : ℝn → ℝ C

∫C
f ds

f
C

∫
b

a
f( ⃗r(t)) ⃗r′￼(t) dt

⃗r



In the warm-up, we used three different  to compute three 
path integrals, but two of them had equal values. This was not a coincidence.

⃗r : [a, b] → ℝ2

 
with .

x = t, y = 1 − t2
−1

2
≤ t ≤ 1

 
with .

x = −cos(t), y = sin(t)
π
4 ≤ t ≤ π

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

• 
t = -O.7

• t = O
• t = O.5

t = O.9 •

t = O.7 •

t = 1 
•

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

• 
t = π/4

• t = π/2

t = 2.7 •

t = 3π/4 •

t = π 
•

t = 1 •



Fact: If                                 with 
and

 with  
are two different parameterizations of the same curve, then

   and   

will be equal.

This is why we can talk about “ ” for a curve!

⃗r = [x, y] a ≤ t ≤ b

⃗R = [x, y] c ≤ t ≤ d

∫
b

a
f( ⃗r(t)) ⃗r′￼(t) dt ∫

d

c
f( ⃗R (t)) ⃗R ′￼(t) dt

∫C
f ds



Example task: “Integrate  over the clockwise arc of the circle   
with  and .”

This was exactly the warm-up for students at the beginning or end of the 
alphabet (the middle group’s  was for a different curve).

The answer is . You could use either

,  
or

,  

to do this path integral, but the first choice is much easier.

x3y x2 + y2 = 1
x ≥ −1

2
y ≥ 0

⃗r

1
16

x = −cos(t), y = sin(t) π
4 ≤ t ≤ π

x = t, y = 1 − t2 −1

2
≤ t ≤ 1



Task 2: “Integrate  over the line segment from  to .”

Step 1: Come up with parametric equations (or a vector equation) to 
describe this line segment.

Step 2: Use the formula .

2y − x (0,0) (1,3)

∫ b
a

f( ⃗r(t)) ⃗r′￼(t) dt

= ∫ b
a

f(x(t), y(t)) (x′￼)2 + (y′￼)2dt

Answer: 1O3 2



Parametric equations
In this course you will only have to create your own equations for three kinds 
of paths:

straight line segments,
arcs of circles,
combinations of line segments and arcs (just add the path integrals over 
each part of the complex path).

For other kinds of curves, an  equation (or separate  equations) 
will be given in the task.

⃗r x = ..., y = ...



Parametric equations
In this course you will only have to create your own equations for three kinds 
of paths:

straight line segments,

The line from point  to point  can always be parameterized as 

with , although sometimes other choices are easier.
arcs of circle,

The arc of a circle of radius  centered at  is always

with the bounds for  depending on which part of the circle is used.

⃗A ⃗B
⃗r = (1 − t) ⃗A + t ⃗B

0 ≤ t ≤ 1

R (h, k)
x = h + R cos(t), y = k + R sin(t)

t



From Analysis 1 you should know that

and that

.

If the “constants” are actually vectors, this still works. So, for example,

d
dt [g(t) ⋅ constant] =

dg
dt

⋅ constant

d
dt [f(t) + g(t)] =

df
dt

+
dg
dt

d
dt [ln(t5) ̂ı + ln(t) ̂𝚥] = d

dt [ln(t5) ̂ı] + d
dt [ln(t) ̂𝚥]

= d
dt [ln(t5)] ̂ı + d

dt [ln(t)] ̂𝚥

=
5t4

t5
̂ı +

1
t

̂𝚥

Last 
week



From Analysis 1 you should know that

and that

.

If the “constants” are actually vectors, this still works. So, for example,

(g(t) ⋅ constant)′￼ = g′￼(t) ⋅ constant

(g(t) + h(t))′￼ = g′￼(t) + h′￼(t)

(ln(t5) ̂ı + ln(t) ̂𝚥)′￼ = (ln(t5) ̂ı)′￼+ (ln(t) ̂𝚥)′￼

= (ln(t5))′￼ ̂ı + (ln(t))′￼ ̂𝚥

=
5t4

t5
̂ı +

1
t

̂𝚥

Last 
week



From algebra, you should know the vector symbols

in 2D (in 3D we have ) and you should know how to calculate the length 
of a vector.

Combining all of this, if 
 

then we know

.

̂ı = [1,0] and ̂𝚥 = [0,1]
̂ı, ̂𝚥, ̂k

⃗r = ln(t5) ̂ı + ln(t) ̂𝚥

⃗r′￼ =
5
t

̂ı +
1
t

̂𝚥 = ( 5
t )

2

+ ( 1
t )

2

=
26
t

Last 
week



Partial derivatives
For a function with multiple inputs we can change  or change  (or both at  
once—more on that later), so we have multiple ways to take derivatives. 

The partial derivative of  with respect to  can be written as any of

 

and is what you get if you think of every letter other than  as a constant. Like with 
 and  from An. 1, we also have the partial derivative of  with respect  

to  at the point , which is a single number; we write this as  . 

There is also a partial derivative with respect to  (and to  if there are 3 inputs).

x y

f(x, y) x

fx′￼(x, y) fx′￼ Dx f ∂x f
∂f
∂x

x
f ′￼(x) f ′￼(a) f

x (a, b) fx′￼(a, b)

y z

Last 
tim

e



Task 1: Calculate . This is  for the function . 

 
 
 
 
 

Task 2: Calculate . This is  for the function .

∂
∂x [y2 sin(x)] fx′￼ f(x, y) = y2 sin(x)

∂
∂y [y2 sin(x)] fy′￼ f(x, y) = y2 sin(x)



Task 3: Calculate   for the function . 
 
 
 

 
 
Task 4: Calculate   for the function .

fx′￼(0,3) f(x, y) = y2 sin(x)

fy′￼(0,3) f(x, y) = y2 sin(x)



Gradient vector
The gradient of the function  at the point  is written  and 
is the

        .

We can write  for short.

The gradient function , also written  for short, is a vector that 
depends on  (so it is technically a “vector field”).

f(x, y) (a,b) ∇f(a, b)

∇f(a, b) =
fx′￼(a, b)

.
fy′￼(a, b)

∇f = [ fx′￼, fy′￼]

∇f(x, y) ∇f
x and y

slope    gradient 
gradient  gradient

f

🇺🇸 
🇬🇧

vector



Example: Calculate  for the function .∇f(0,3) f(x, y) = y2 sin(x)

We already computed fx’(O,3) = 9 and fy’(O,3) = O, so 
we just combine them into the vector [9, O] or 9î. 

Another way to do this is to think of ∇f(x,y) as the 
vector-with-formulas 

∇f =  

and then plug in x=O, y=3 to get ∇f(O,3) = .

[ ]
[9O]

2ysin(x)

y2cos(x)



Partial derivatives
Given a function , we can calculate

the function 
the function 

The “ ” could be any point; the coordinates  are just an example.

What do these mean??
Like in Analysis 1, we can think of slope of some tangent line or we can think 
of “rate of change” more generally. 

For the slope, we need to think about what keeping other variables constant 
means visually. Note that, for example,  is a plane in 3D space.

f(x, y)
fx′￼(x, y)
fy′￼(x, y)

(8, 5) 8 and 5

y = −1

the number 
the number 

the vector .

fx′￼(8, 5)
fy′￼(8, 5)

∇f(8, 5) = [fx′￼(8, 5)
fy′￼(8, 5)]



The slope of this 
line is .fx′￼(2, −1)

The slope of this 
line is .fy′￼(2, −1)



Suppose  describes the temperature at different positions. 
If you stand at , you have the temperature  .

If you move east (right), your temperature  
changes at the rate  .
If you move west (left), your temperature  
changes at rate .
  
 
If instead you move south (down), your  
temperature changes at rate . 

What if you move northeast? Or south-southwest?

f(x, y)
(a, b) f(a, b)

fx′￼(a, b)

−fx′￼(a, b)

−fy′￼(a, b)

N
north

pólnoć

E
east

 wschód

S
south

południe

W
west

zachód

NE

SESW

NW

If instead you move north (up), your  
temperature changes at rate .fy′￼(a, b)

Next week!


