Analysis 2

12 March 2024

Warm-up: Calculate $\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t$ for the function $f(x, y)=x y^{3}$ and \ldots

$$
\begin{gathered}
\ldots x=-\cos (t), y=\sin (t) \\
\text { with } \frac{\pi}{4} \leq t \leq \pi
\end{gathered}
$$

$$
\begin{gathered}
\ldots x=t, y=\sqrt{1-t^{2}} \\
\quad \text { with } \frac{-1}{\sqrt{2}} \leq t \leq 1
\end{gathered}
$$

if surname S-Ż.
if surname G-R.

Warm-up: Calculate $\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t$ for the function $f(x, y)=x y^{3}$ and three different $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$.
Your simplified integral should be

$$
\begin{aligned}
& \text { A-F: } \int_{\pi / 4}^{\pi}(-\cos t)(\sin t)^{3} d t=\ldots \\
& \text { G-R: } \int_{1}^{e} \frac{s \sqrt{26}(\ln t)^{4}}{t} d t=\ldots \\
& s-\dot{Z}: \int_{-1 / \sqrt{2}}^{1}\left(t-t^{3}\right) d t=\ldots
\end{aligned}
$$

Warm-up: Calculate $\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t$ for the function $f(x, y)=x y^{3}$ and three different $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$.
Your simplified integral should be

$$
\begin{aligned}
& \text { A-F: } \int_{\pi / 4}^{\pi}(-\cos t)(\sin t)^{3} d t=\left.\frac{-1}{4}(\sin t)^{4}\right|_{t=\pi / 4} ^{t=\pi}=\frac{1}{16} \\
& \text { C-R: } \int_{1}^{e} \frac{5 \sqrt{26}(\ln t)^{4}}{t} d t=\left.\sqrt{26}(\ln t)^{s}\right|_{t=1} ^{t=e}=\sqrt{26} \\
& S-\dot{Z}: \int_{-1 / \sqrt{2}}^{1}\left(t-\left(t^{3}\right) d t=\left.\left(\frac{1}{2} t^{2}-\frac{1}{4} t^{4}\right)\right|_{t=-1 / \sqrt{2}} ^{t=1}=\frac{1}{16}\right.
\end{aligned}
$$

A scalar function is a function whose output is a number but whose input can be thought of as a list of numbers or as a single vector. We often write

$$
f(x, y)
$$

for a function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

and $f(x, y, z)$ for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$.

A curve (path) in 2D or 3D can be described using parametric equations or using a single vector equation. Therefore a vector function

$$
\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}
$$

can also describe a curve.

Integrals

Is $\int_{0}^{1} e^{x^{2}} \mathrm{~d} x$ more or less than $1 ?$

- more or less than 2?
- more or less than 3?

How could we get an approximate value for this integral?

$$
\begin{aligned}
& 0.26+1.06 \times 0.26+1.28 \times 0.26+1.76 \times 0.26 \\
& =0.26+0.2661+0.321+0.439 \\
& =1.276
\end{aligned}
$$

Integrals

Is $\int_{0}^{1} e^{x^{2}} \mathrm{~d} x$ more or less than $1 ?$

- more or less than 2?
- more or less than 3?

How could we get an approximate value for this integral?

$$
\begin{aligned}
& 0.126+1.016 \times 0.126+\cdots+1.76 \times 0.126+2.15 \times 0.126 \\
& =0.126+0.127+\cdots+0.219+0.269 \\
& =1.362
\end{aligned}
$$

We can approximate $\int_{a}^{b} f(x) \mathrm{d} x$ by adding up several terms that are
(f value) \times (length of a small interval).
without actually drawing any rectangles.

- Officially, the integrals is defined as the limit of this kind of sum.
- The Fundamental Theorem of Calculus tells us that we can use anti-derivatives to calculate integrals instead (if we can find a formula for the anti-derivative of $f(x))$.

The $\sum f \cdot$ length idea lets us draw a 1D picture instead of a 2D picture...

Analysis 1: $\int_{a}^{b} f(x) d x$

Area

Anyching

The length of each small line segment is exactly $\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$, so that's why its in our path-integral formula.

$\int_{a}^{b} f(x) d x$

The path integral of a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a curve C is written as

$$
\int_{C} f \mathrm{~d} s .
$$

Officially, this is the limit of a sum of f-values multiplied by lengths of small intervals (small line segments connecting points on the curve C).

Last week, I suggested using the following formula:

$$
\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t .
$$

even though \vec{r} isn't actually part of the definition above.

In the warm-up, we used three different $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$ to compute three path integrals, but two of them had equal values. This was not a coincidence.

$$
\begin{gathered}
x=-\cos (t), y=\sin (t) \\
\text { with } \frac{\pi}{4} \leq t \leq \pi .
\end{gathered}
$$

$x=t, y=\sqrt{1-t^{2}}$
with $\frac{-1}{\sqrt{2}} \leq t \leq 1$.

Fact: If

$$
\vec{r}=[x, y] \text { with } a \leq t \leq b
$$

and

$$
\vec{R}=[x, y] \text { with } c \leq t \leq d
$$

are two different parameterizations of the same curve, then

$$
\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t \text { and } \int_{c}^{d} f(\vec{R}(t))\left|\vec{R}^{\prime}(t)\right| \mathrm{d} t
$$

will be equal.

This is why we can talk about " $\int_{C} f \mathrm{ds}$ " for a curve!

Example task: "Integrate $x^{3} y$ over the clockwise arc of the circle $x^{2}+y^{2}=1$ with $x \geq \frac{-1}{\sqrt{2}}$ and $y \geq 0$."
This was exactly the warm-up for students at the beginning or end of the alphabet (the middle group's \vec{r} was for a different curve).

The answer is $\frac{1}{16}$. You could use either

- $x=-\cos (t), y=\sin (t), \frac{\pi}{4} \leq t \leq \pi$
or
- $x=t, y=\sqrt{1-t^{2}}, \frac{-1}{\sqrt{2}} \leq t \leq 1$
to do this path integral, but the first choice is much easier.

Task 2: "Integrate $\sqrt{2 y-x}$ over the line segment from $(0,0)$ to $(1,3)$."

- Step 1: Come up with parametric equations (or a vector equation) to describe this line segment.
- Step 2: Use the formula $\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| \mathrm{d} t$.

$$
=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \mathrm{~d} t
$$

Answer: $\frac{10}{3} \sqrt{2}$

Parametric equations

In this course you will only have to create your own equations for three kinds of paths:

- straight line segments,
- arcs of circles,
- combinations of line segments and arcs (just add the path integrals over each part of the complex path).

For other kinds of curves, an \vec{r} equation (or separate $x=\ldots, y=\ldots$ equations) will be given in the task.

In this course you will only have to create your own equations for three kinds of paths:

- straight line segments,

The line from point \vec{A} to point \vec{B} can always be parameterized as

$$
\vec{r}=(1-t) \vec{A}+t \vec{B}
$$

with $0 \leq t \leq 1$, although sometimes other choices are easier.

- arcs of circle,

The arc of a circle of radius R centered at (h, k) is always

$$
x=h+R \cos (t), \quad y=k+R \sin (t)
$$

with the bounds for t depending on which part of the circle is used.

From Analysis 1 you should know that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[g(t) \cdot \text { constant }]=\frac{\mathrm{d} g}{\mathrm{~d} t} \cdot \text { constant }
$$

and that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[f(t)+g(t)]=\frac{\mathrm{d} f}{\mathrm{~d} t}+\frac{\mathrm{d} g}{\mathrm{~d} t}
$$

If the "constants" are actually vectors, this still works. So, for example,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\ln \left(t^{5}\right) \hat{\imath}+\ln (t) \hat{\jmath}\right] & =\frac{\mathrm{d}}{\mathrm{~d} t}\left[\ln \left(t^{5}\right) \hat{\imath}\right]+\frac{\mathrm{d}}{\mathrm{~d} t}[\ln (t) \hat{\jmath}] \\
& =\frac{\mathrm{d}}{\mathrm{~d} t}\left[\ln \left(t^{5}\right)\right] \hat{\imath}+\frac{\mathrm{d}}{\mathrm{~d} t}[\ln (t)] \hat{\jmath} \\
& =\frac{5 t^{4}}{t^{5}} \hat{\imath}+\frac{1}{t} \hat{\jmath}
\end{aligned}
$$

From Analysis 1 you should know that

$$
(g(t) \cdot \text { constant })^{\prime}=g^{\prime}(t) \cdot \text { constant }
$$

and that

$$
(g(t)+h(t))^{\prime}=g^{\prime}(t)+h^{\prime}(t)
$$

If the "constants" are actually vectors, this still works. So, for example,

$$
\begin{aligned}
\left(\ln \left(t^{5}\right) \hat{\imath}+\ln (t) \hat{\jmath}\right)^{\prime} & =\left(\ln \left(t^{5}\right) \hat{\imath}\right)^{\prime}+(\ln (t) \hat{\jmath})^{\prime} \\
& =\left(\ln \left(t^{5}\right)\right)^{\prime} \hat{\imath}+(\ln (t))^{\prime} \hat{\jmath} \\
& =\frac{5 t^{4}}{t^{5}} \hat{\imath}+\frac{1}{t} \hat{\jmath}
\end{aligned}
$$

From algebra, you should know the vector symbols

$$
\hat{\imath}=[1,0] \quad \text { and } \quad \hat{\jmath}=[0,1]
$$

in 2D (in 3D we have $\hat{\imath}, \hat{\jmath}, \hat{k}$) and you should know how to calculate the length of a vector.

Combining all of this, if

- $\vec{r}=\ln \left(t^{5}\right) \hat{\imath}+\ln (t) \hat{\jmath}$
then we know
- $\left|\vec{r}^{\prime}\right|=\left|\frac{5}{t} \hat{\imath}+\frac{1}{t} \hat{\jmath}\right|=\sqrt{\left(\frac{5}{t}\right)^{2}+\left(\frac{1}{t}\right)^{2}}=\frac{\sqrt{26}}{t}$.

Parkial derivalives

For a function with multiple inputs we can change x or change y (or both at once-more on that later), so we have multiple ways to take derivatives.

The partial derivative of $f(x, y)$ with respect to x can be written as any of

$$
f_{x}^{\prime}(x, y) \quad f_{x}^{\prime} \quad D_{x} f \quad \partial_{x} f \quad \frac{\partial f}{\partial x}
$$

and is what you get if you think of every letter other than x as a constant. Like with $f^{\prime}(x)$ and $f^{\prime}(a)$ from An. 1, we also have the partial derivative of f with respect to \boldsymbol{x} at the point (a, b), which is a single number; we write this as $f_{x}^{\prime}(a, b)$.

There is also a partial derivative with respect to y (and to z if there are 3 inputs).

Task 1: Calculate $\frac{\partial}{\partial x}\left[y^{2} \sin (x)\right]$. This is f_{x}^{\prime} for the function $f(x, y)=y^{2} \sin (x)$.

Task 2: Calculate $\frac{\partial}{\partial y}\left[y^{2} \sin (x)\right]$. This is f_{y}^{\prime} for the function $f(x, y)=y^{2} \sin (x)$.

Task 3: Calculate $f_{x}^{\prime}(0,3)$ for the function $f(x, y)=y^{2} \sin (x)$.

Task 4: Calculate $f_{y}^{\prime}(0,3)$ for the function $f(x, y)=y^{2} \sin (x)$.

Gradient vector

The gradient of the function $f(x, y)$ at the point (a, b) is written $\nabla f(a, b)$ and is the vector

$$
\nabla f(a, b)=\left[\begin{array}{l}
f_{x}^{\prime}(a, b) \\
f_{y}^{\prime}(a, b)
\end{array}\right]
$$

We can write $\nabla f=\left[f_{x}^{\prime}, f_{y}^{\prime}\right]$ for short.

slope gradient
gradient gradient

The gradient function $\nabla f(x, y)$, also written ∇f for short, is a vector that depends on x and y (so it is technically a "vector field").

Example: Calculate $\nabla f(0,3)$ for the function $f(x, y)=y^{2} \sin (x)$.
We already computed $f_{x}^{\prime}(0,3)=9$ and $f_{y}^{\prime}(0,3)=0$, so we just combine them into the vector $[9,0]$ or 91

Another way to do this is to think of $\nabla f(x, y)$ as the vector-wich-formulas

$$
\nabla f=\left[\begin{array}{l}
y^{2} \cos (x) \\
2 y \sin (x)
\end{array}\right]
$$

and then plug in $x=0, y=3$ bo get $\nabla f(0,3)=\left[\begin{array}{l}9 \\ 0\end{array}\right]$

Partial derivalives

Given a function $f(x, y)$, we can calculate

- the function $f_{x}^{\prime}(x, y)$
- the function $f_{y}^{\prime}(x, y)$
- the number $f_{x}^{\prime}(8,5)$
- the number $f_{y}^{\prime}(8,5)$
- the vector $\nabla f(8,5)=\left[\begin{array}{l}f_{x}^{\prime}(8,5) \\ f_{y}^{\prime}(8,5)\end{array}\right]$.

The " $(8,5)$ " could be any point; the coordinates 8 and 5 are just an example.
What do these mean??
Like in Analysis 1, we can think of slope of some tangent line or we can think of "rate of change" more generally.

- For the slope, we need to think about what keeping other variables constant means visually. Note that, for example, $y=-1$ is a plane in 3D space.

Suppose $f(x, y)$ describes the temperature at different positions. If you stand at (a, b), you have the temperature $f(a, b)$.

- If you move east (right), your temperature changes at the rate $f_{x}^{\prime}(a, b)$.
- If you move west (left), your temperature changes at rate $-f_{x}^{\prime}(a, b)$.
- If instead you move north (up), your temperature changes at rate $f_{y}^{\prime}(a, b)$.
- If instead you move south (down), your temperature changes at rate $-f_{y}^{\prime}(a, b)$.

- What if you move northeast? Or south-southwest?

